 Teacher: Madhu Karthik
Available courses
 Teacher: Praveena Gangadharan
 Teacher: Madhu Karthik
 Teacher: Athira P
Course for publishing the grades of Semester VI B.Tech CSE (2015 Batch) students for the semester 2018 Jan  May
 Teacher: Thasnin Harish
Course for publishing the grades of Semester VI B.Tech ME (2015 Batch) students for the semester 2018 Jan  May
 Teacher: Thasnin Harish
Course for publishing the grades of Semester VI B.Tech EE (2015 Batch) students for the semester 2018 Jan  May
 Teacher: Thasnin Harish
Course for publishing the grades of Semester VI B.Tech CE (2015 Batch) students for the semester 2018 Jan  May
 Teacher: Thasnin Harish
Course for publishing the grades of Semester IV B.Tech EE (2016 Batch) students for the semester 2018 Jan  May
 Teacher: Thasnin Harish
Course for publishing the grades of Semester IV B.Tech EE (2016 Batch) students for the semester 2018 Jan  May
 Teacher: Thasnin Harish
Course for publishing the grades of Semester IV B.Tech CSE (2016 Batch) students for the semester 2018 Jan  May
 Teacher: Thasnin Harish
Course for publishing the grades of Semester IV B.Tech Civil Engineering (2016 Batch) students for the semester 2018 Jan  May
 Teacher: Thasnin Harish
Course for publishing the grades of second year students for the semester 2018 Jan  May
 Teacher: Thasnin Harish
Fundamentals : System & Control volume; Property, State & Process; Exact & Inexact differentials
Work: Thermodynamic definition of work; Displacement work; Path dependence of displacement work and illustrations for simple processes; Other forms of work – electrical, spring and shaft
Temperature: Definition of thermal equilibrium, Zeroth law; Temperature scales; Thermometers
Heat: Definition; examples of heat/work interaction in systems
First Law: Cyclic & Noncyclic processes; Concept of total energy E; Demonstration that E is a Property; Various modes of energy; Pure substance
Ideal Gases and ideal gas mixtures
Properties of two phase systems: Constant temperature and Constant pressure heating of water; Definitions of saturated states; pvT surface; Use of steam tables and R134a Tables; Saturation Tables; Superheated tables; Identification of states & determination of properties
First Law for Flow Processes: Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; steady flow devices; Unsteady process
Second Law: Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; KelvinPlanck and Clausius statements; Definition of reversible process; Internal and external irreversibilities; Carnot cycle; Absolute temperature scale
Entropy: Clausius inequality; Definition of entropy S; Demonstration that entropy S is a property; Evaluation of S for solids, liquids, ideal gases and ideal gas mixtures undergoing various processes; Determination of s from steam tables; Principle of Increase of entropy; Illustration of processes in TS coordinates; Definition of Isentropic efficiency for compressors, turbines and nozzles
Thermodynamic cycles: Basic Rankine cycle;Basic Brayton cycle;Basic vapor compression cycle
 Teacher: Krishna Seshagiri
 Teacher: Milind Brahme
The main objective of this course is to enable the students to understand the technical issues related to environmental management systems. The course aims at equipping the students to conceptualise, design and implement effective treatment systems for various components of water supply and waste management.
 Teacher: Sunitha K Nayar
This is a basic level course in chemistry that will promote the knowledge and application of Physical and Organic concepts in Chemistry amongst the engineering candidates and equip them with a utility tool before exploring their respective engineering streams. The main objective of this course is to expose the students to thermodynamics of microscopic and macroscopic systems, the rate (kinetics) of day to day processes and the structure, characteristics and reactions of organic systems.
 Teacher: Debarati Chatterjee
 Teacher: A Padmesh
At the end of the course, the students will be able to
(i) Understand the origin of the soil and the geological cycle
(ii) Identify and perform appropriate method of determination of physical and engineering properties of soil and to classify the soil for various civil engineering applications
(iii) Apply engineering knowledge and judgement to calculate the seepage through soil, to compute both geostatic and induced stresses due to different types of loading, estimate the amount and time required for settlement under a given load and to compact the soil based on the soil conditions and project requirements.
 Teacher: Divya PV
EE3xxx – Microwave Engineering
This course provides the foundation concepts for the following courses Antenna Theory, Microwave Systems Engineering, Radar Engineering and Microwave Remote Sensing.
Course Objectives
· Analyze various design aspects of matching network, filters and resonators
· Develop the skills of using mathematical and electromagnetic tools to calculate the Sparameters of a network
· Use transmission lines to analyse matching network and resonators design
· Solve assignments on working of rectangular and circular waveguide as resonators
· Design power dividers and directional couplers for class project in HFSS
Syllabus
• Microwave network analysis: Impedance and Equivalent Voltages and Currents, Impedance and Admittance Matrices, Reciprocal Networks, Lossless Networks, The Scattering Matrix, Reciprocal Networks and Lossless Networks, Relation to Impedance Matrix, Equivalent Circuits for TwoPort Networks, Application to ThruReﬂectLine Network Analyzer Calibration, Excitation of Waveguides
• Impedance matching and tuning: Matching with Lumped Elements (L Networks), Analytic Solutions, Smith Chart Solutions, SingleStub Tuning, Shunt Stubs, Series Stubs, DoubleStub Tuning, The QuarterWave Transformer
• Microwave resonators: Series and Parallel Resonant Circuits, Loaded and Unloaded Q, Transmission Line Resonators (ShortCircuited λ/2 Line and λ/4 Line, OpenCircuited λ/2 Line), Rectangular Waveguide Cavity Resonators
• Power dividers and directional couplers: Basic Properties of Dividers and Couplers, ThreePort Networks (TJunctions), FourPort Networks (Directional Couplers), The TJunction Power Divider, Lossless Divider, Resistive Divider, The Wilkinson Power Divider, Waveguide Directional Couplers
• Microwave filters: Filter Design by the Insertion Loss Method, Characterization by Power Loss Ratio, Maximally Flat LowPass Filter Prototype, EqualRipple LowPass Filter Prototype, Linear Phase LowPass Filter Prototypes, Filter Transformations, Bandpass and Bandstop Transformations, Filter Implementation, Richards’ Transformation, Kuroda’s Identities, Impedance and Admittance Inverters; Introduction to coupled line filters
Assignments
· Problems from the text or reference books
· MATLAB and OpenEMS/HFSS based engineering problems
Mark Distribution 

Class Test 
5 
Quiz 1 
10 
Quiz 2 
10 
Assignments 
20 
Project 
10 
Final exam 
45 
Textbooks
Microwave Engineering by David M. Pozar, Sixth edition, published by Pearson Education.
Faculty
Swaroop Sahoo
Teaching Assistant
Mr. Shaik Sharif
 Teacher: Swaroop Sahoo
Learning Objectives : This course is an introductory graduate level course to design analog circuits and systems. Students will understand the internal construction of an opamp and its implications on circuit performance. They will be review elements of feedback and stability as applicable to analog circuits. They will learn look at applications of analog circuits in building various systems ranging from power amplifiers, DCDC converters, filters, oscillators, PhaseLocked Loops. They will be introduced to design guidelines to choose commercially available AnalogDigital/ DigitalAnalog converters
Learning Outcomes : At the end of this course, students should be
able to design and build circuits using transistors and opamps. They
should understand the internal design aspects of opmaps and
appreciate the restrictions that these aspects impose on design of
analog systems. They should be able to design power amplifiers,
DCDC converters, filters, oscillators, phaselocked loops and
understand the metrics to choose AnalogDigital/ DigitalAnalog
converters.
Syllabus :
OpAmps : Review of MOSFET operation, Single stage amplifiers, Cascode and multistage amplifiers, Biasing circuits and feedback, Noise and mismatch analysis, High frequency response;, Differential amplifiers, Filters : Review of reciprocity, Tellegen's theorem, synthesis of Butterworth and Chebyshev filters, state variable filter, GmC filter, SallenKey filter, Rauch filter, switchedcapacitor filters, tuning of filters, Oscillators : Barkhausen stability criterion, simple LC oscillator, Double integrator oscillator, Wien bridge oscillator, Colpitts Oscillator, Hartley oscillator; Power amplifiers and convertors : Class A, Class B, Class AB, Class C, Design of simple Dcdc converters; Introduction to Phase Locked Loops; Design guidelines for working with Analog to Digital Converters, Digital to Analog Converters. SPICE based simulation experiments using industry standard simulators will run in parallel with the theoretical aspects of the course.
Text books :

Microelectronic Circuits: Theory and Applications by Adel S. Sedra, Kenneth C. Smith and Arun N. Chandorkar Publisher: Oxford; Sixth edition ISBN10: 0198089139ISBN13: 9780198089131

Franco S, Design with Operational Amplifiers and Analog Integrated Circutis, McGraw Hill Book Co., 1988.

Gray, Hurst, Lewis, Meyer, Analysis and Design of Analog Integrated Circuits, 5th Edition, Wiley, 2009.
Reference Books :

B. Razavi, Design of Analog Integrated Circuits, McGraw Hill Education, 2000.

Paul Horowitz and Winfield Hill, The Art of Electonics (2 nd Edition), Cambridge University Press, 1992.
___________________________
 Teacher: Arvind Ajoy
Learning Objectives : This course is an introduction to analog circuits using using diodes and transistors. Students will be introduced to simple diode based circuits. They will also be introduced to MOS transistors, their characteristics, techniques for biasing them, and amplifiers using them. The basic transistor amplifier stages are seen as realizations of different controlled sources using negative feedback. Small and largesignal characteristics of each amplifier will be discussed. Frequency compensation techniques to stabilise higher order systems will be discussed. An overview of Bipolar transistors circuits performing similar tasks as the MOS transistor based circuits will also be covered.
Learning Outcomes : At the end of this course, students should be able to build design circuits using diodes and transistors. They should be able to recognize and analyze the basic amplifiers and biasing arrangements. Students should also be able to perform dominantpole compensation of higher order systems and stabilise them, and understand the implication of this compensation on system level performance of circuits.
Syllabus :
Diode Equivalent Circuit; Applications of Diodes; Design of DC Power Supply; Zener based Shunt Regulator; Incremental linear analysis of Nonlinear circuits; Feedback Biasing  Current Mirror, Drain Feedback, Source Feedback; Common Source, Common Drain, Common Gate Amplifiers including frequency response; Active load and CMOS circuits, Differential Amplifier, Building blocks of an Opamp; Feedback theory, negative/positive feedback, stability criterion, bode plot with gain and phase margin, Impact of gainbandwidth product on amplifier performance; Overview of Bipolar Junction Transistor Circuits.
Text books :
Microelectronic Circuits: Theory and Applications by Adel S. Sedra, Kenneth C. Smith and Arun N. Chandorkar Publisher: Oxford; Sixth edition ISBN10: 0198089139ISBN13: 9780198089131
 Teacher: Arvind Ajoy
The objective of this course is to develop an understanding of quantification of information and analytical tools necessary to apply information theory to modern engineering problems. To mathematically model and analyze communication channels. To understand and provide solutions to the key issues of compression and error correction of data. To convey the principles and applications of information theory.
 Teacher: Lakshmi Narasimhan Theagarajan
This is a core course for fourth semester CS students. The course is about mathematically modelling of computation, with an aim to understand the power and limitations of computation.
 Teacher: Deepak Rajendraprasad
This course introduces a selection of themes central to understanding Indian economy and its development experience and prospects. The course introduces the meaning and concept of development, and proceeds to present some stylized facts and economic trends in India’s development story, laying emphasis on the Economic Reforms of the 1990s. From this broader framework, the Course also provides a critique of the growth story, by examining the outliers, and assessing the inclusiveness of development through the prism of social sector reforms.
 Teacher: Shalina Mathew
Measurements and Instruments Lab
 Teacher: Arvind Ajoy
 Teacher: Vinod Prasad
 Teacher: Lakshmi Sankar
Course on Measurements and Instrumentation for Sem VI EE students.
 Teacher: Arvind Ajoy
 Teacher: Sreenadhan S
This course involves 5 experiments in the first cycle involving IC Engines, Heat Transfer, and Manufacturing. List of experiments and schedule are in the attached.
Faculty are invited to upload relevant documents at the earliest possible.
 Teacher: Sunil Kumar Arolla
 Teacher: Dupadu Chakradhar
 Teacher: Kesavan D
 Teacher: Pramod S Mehta
 Teacher: Krishna Seshagiri
Traffic Systems Characteristics: User characteristics – Vision, hearing; Vehicle characteristics Turning characteristics, Braking characteristics, Acceleration characteristics; Traffic characteristics  Traffic volume, Speed. Introduction to Traffic Flow theory: Macroscopic parameters – Space mean speed, Density, and Flow; Microscopic parameters – Time mean speed, Time headway, Space headway, occupancy; Relation between microscopic and macroscopic parameters; Fundamental traffic flow equation, Gap acceptance, Shockwaves, Queuing theory. Traffic Control System: Road markings – Principles of road markings, carriageway markings and object markings; Traffic signs – Importance of traffic signs, Types of traffic signs; Signal design Illustration of signals, fixed time signals, signal design using IRC method and HCM method. Traffic Studies and Basic Analysis: Speed, journey time, and delay studies, Volume and occupancy studies, Capacity analysis, Level of Service (LOS) analysis. Origindestination Studies, Parking studies, Accident Studies, Aerial traffic studies. Traffic Facilities: Intersections, Rotary and interchanges, Parking facilities. ITS taxonomy and components of ITS: Applications to Highway Systems
 Teacher: Ranju Mohan
 Teacher: Athira P
 Teacher: Balakumar GP
 Teacher: CR Jayanarayanan
 Teacher: Debarati Chatterjee
 Teacher: Deepak Rajendraprasad
This is a core course for B.Tech (CS) fourth semester.
 Teacher: Jasine Babu
This is a core course for B.Tech(CS) fourth semester.
 Teacher: Jasine Babu
This is a secondlevel course to EE3001. The aim of this course is to introduce students to the fundamentals of classical CMOS technology, and issues in scaling. In this context, students will be introduced to transistors with new device structures and materials.
 Teacher: Revathy Padmanabhan
 Teacher: Sudheesh TK
Basic course in Electrostatics, Magnetostatics and Electrodynamics.
 Teacher: Jayakumar Balakrishnan
 Teacher: Uma Divakaran
 Teacher: Prithvi Narayan
This lab is divided into two modules:
The first module will deal with the design of printed circuit boards (PCBs). Students will also fabricate the PCBs in the chemistry lab.
In the second module, students will be introduced to scientific computation using Python.
 Teacher: Revathy Padmanabhan
 Teacher: Lakshmi Narasimhan Theagarajan
Workshop for second semester B.Tech students of all disciplines.
Modules in the workshop are:
1. Electrical
2. Electronics
3. Instrumentation
4. Pneumatic's and Hydraulics
 Teacher: Dupadu Chakradhar
 Teacher: Lakshmi Narasimhan Theagarajan
Analysis of statically determinate structures – beams, frames and trusses; deflection – geometric methods (momentarea method, conjugatebeam method), workenergy methods (virtual work, Castigliano’s theorem); influence line diagrams and it’s applications; analysis of statically indeterminate structures – force methods (approximate methods for lateral loads, method of least work) and displacement methods (slopedeflection method, momentdistribution method).
 Teacher: Madhu Karthik
Electrical machines LAB
 Teacher: Arun Rahul S
Learning Objectives: Familiarization of the student with the basics of construction, theory
and operation of electrical machines and transformers.
Learning Outcomes: At the end of the course, the student is expected to be able to (a)
understand and differentiate between the basic varieties of machines / transformers and their
relevance in applications (b) understand the basic nameplate specifications of a machine /
transformer (c) Analyze and quantify the performance of machines / transformers in simple
applications and arrive at performance metrics (d) understand the principles of control and
operation of machines and transformers.
Course content: Review of magnetic circuits; Basic concepts of rotating electrical machines,
DC Machines: construction and principles of operation, equivalent circuit, performance
equations, generator and motor operation, series/shunt connections, speedtorque curves,
principles of speed control as motor. Synchronous machines: construction and principles of
operation, equivalent circuit, parameter estimation, armature reaction, performance
assessment, regulation, synchronization and grid connected operation of cylindrical rotor
machine, Transformers: construction, equivalent circuit, parameter estimation, noload and short
circuit tests, regulation, parallel operation, perunit notation, threephase transformers:
construction and operation. Autotransformers, Induction machines: construction and principles
of operation, equivalent circuit, parameter estimation noload and blocked rotor tests, speed
torque curves, principles of speed control, elements of generator operation, performance
assessment.
Texbook:
1. Fitzgerald, Kingsley and Umans, Electric Machinery, sixth edition, Tata McGraw Hill, New
Delhi, 2002.
2. Nagrath and Kothari, Electric Machines, Fourth edition, Tata McGraw Hill, New Delhi, 2010.
3. Stephen J Chapman, Electric Machinery Fundamentals, Fourth Edition, McGraw Hill,
Singapore 2005.
 Teacher: Arun Rahul S
 Teacher: E K K Nambiar
Objectives
1. Familiarisation with MATLAB and modelling with Simulink
2. Familiarisation with Arduino and interfacing with Simulink
3. Basic control using analog circuits
4. Understanding the basic control of line follower robot
5. Understanding the basic hysterisis control using Arduino and sensing the analog signals
6. Understanding the DC motor parameters and understanding about open loop control
7. Learning about digitization from sdomain to zdomain
List of Experiments
1. Introduction to Matlab and Simulink (one class)
2. Introduction to Arduino and interfacing with Simulink (one class)
3. Voltage regulator control using OPAMP (one class)
4. Line follower robot experiment (one class)
5. Temperature control of light bulb using temperature sensor and Arduino (one class)
6. DC motor open loop speed control and estimating machine parameters (one class)
7. Modelling of DC motor in MATLAB and performing closed loop control using P, and PD (three class)
8. Class project i.e., levitation of small object (three class)
Outcome
1. Student should be able to do modelling with Simulink
2. Students should be able to program Arduino using Simulink
3. Students should learn OPAMP based control circuit design
4. Students should be able to control the robot using Arduino
5. Students should be able to characteristize the model of light bulb and control using Arduino
6. Student should learn about open loop control and advantages and disadvantages
7. Knowing about various forms of closed loop control, stability, system performance etc.
Evaluation
1. Lab Experiments (20%)
2. Lab report every week (20%)
3. Project (20%)
3. Final Exam (40%)
 Teacher: Swaroop Sahoo
 Teacher: Debarati Chatterjee
 Teacher: Dinesh Jagadeesan
 Teacher: Sebastian KL
This course shall introduce the fundamentals of modeling and control of linear time invariant systems; primarily from the
classical viewpoint of Laplace transforms and a brief emphasis on the state space formulation as well. The course will be
useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well
as the feedback control of such systems.
Course Contents:
1. Openloop and closedloop systems: Mathematical Models for Physical Systems:
Electrical circuits, dc generator and motors, Mechanical systems, computational systems. Linearization of nonlinear
systems. Transfer function representation.
2. Transient Response: Typical inputs; Timedomain specifications; Steady state
errors; error series, system error and Nonunity feedback systems.
3. Concept of stability; necessary and sufficient conditions for stability; BIBO stability,
RouthHurwitz criterion; Root locus plots, relative stability.
4. Frequency response; Bode plots; Frequency domain specifications: Gain Margin
and phase Margin; Nyquist plot: Nyquist stability criterion;
5. Controller Design: basics of the proportional, derivative and integral actions, lead lag compensators: via root locus and
frequency domain methods.
6. Statevariable representation of systems: Solution of state equations, stability,
controllability and observability, pole placement.
Text Books:
Modern Control Engineering, 5th Edition, by Katsuhiko Ogata.
Reference Books:
1. Farid Golnaraghi and Benjamin C Kuo, Automatic Control Systems, 9th Edition, John Wiley and Sons
2. I. J. Nagrath and M. Gopal, Control Systems Engineering, 4th Ed., New age international publishers.
3. D’Azzo and Houpis, Feedback Control Systems, Analysis and Synthesis, 1988
4. Richard M. Murray and Karl J. Astrom, Feedback Systems: An introduction for
Scientists and Engineers, Princeton University Press, 2010.
 Teacher: Asish Chandran
 Teacher: Ramkrishna Pasumarthy
This course is offered to the Undergraduate Students as a seminar course and introduces the historical development of European philosophical tradition under forty topics by focusing some seminal contributions of ancient, modern and contemporary thinkers. The course begins with a brief outline of the philosophies of the Greek thinkers, which mark the beginning of Western philosophical tradition. After a brief discussion of the preSocratic thinkers, who are known as the ‘cosmologists’ or ‘natural philosophers’, it will examine the philosophies of the Sophists, Socrates, Plato and Aristotle. The course will then address the major conceptual developments happened during the modern age which was characterized by its scientific temperament and rational acumen. After discussing the major epistemological developments initiated by the rationalists and the empiricists and Immanuel Kant’s reconciliation of the clash between them, this course will examine the important contributions of philosophers like Hegel, Marx and Nietzsche and tries to understand how such developments lead to the unique philosophical contributions 20^{th} century Europe had witnessed. The course concludes with an overview of such developments like the Existentialism and Postmodernism.
 Teacher: Anoop George
Transportation refers to the
activity that facilitates physical movement of goods as well as individuals
from one place to another. It plays a major role in the economic, industrial,
social and cultural development of any region. Transportation Engineering, as
defined by the Institute of Transportation Engineers (ITE), is the application
of scientific principles and technology to the planning, functional design, operation
and management of facilities of any modes of transportation in order to provide
for the safe, efficient, rapid, comfortable, convenient, economical and
environmentally compatible movement of people and goods. Various modes of
transportation include roads, railways, airways, waterways and pipelines.
This course is limited to Highway Engineering and focuses on planning, design, construction, maintenance and operation of road transport facilities. The course is arranged into four divisions, namely, Transportation Planning, Pavement Engineering, Geometric design, and Traffic Engineering.
 Teacher: Ranju Mohan
Fundamental Course on Electric Circuits, Circuit elements, Circuit Analysis for steadystate and transients, Sinusoidal Response, Step Response, Linear and second order circuits, Threephase systems
Introduction to Magnetic Circuits, analogy to electric circuits, magnetic components.
 Teacher: Suresh M
 Teacher: Sunil Kumar Arolla
1.Matrix method of structural analysis (Conventional stiffness, Reduced stiffness & Flexibility) using truss, beam and frame elements
2. Introduction to geometrical nonlinear analysis
3. Introduction to plastic analysis
 Teacher: Anil Kumar
Life Science course for II ^{nd} year B.Tech students
 Teacher: Smitha SG
MECHANICAL ENGINEERING LABORATORY 1
 Teacher: Dupadu Chakradhar
 Teacher: TK Kumar
 Teacher: Krishna Seshagiri
 Teacher: Vara Naga Surendra Kamadi
 Teacher: Milind Brahme
Introductory Mechanics for B. Tech First Year Student
 Teacher: Jayakumar Balakrishnan
 Teacher: Uma Divakaran
 Teacher: Madhu Karthik
 Teacher: Anil Kumar
 Teacher: Divya PV
 Teacher: Sudheesh TK
This is
a first course on heat and mass transfer and the students are expected to learn
the basics of this subject and demonstrate ability to use calculate the heat
and mass transfer effects in simple systems.
 Teacher: Krishna Seshagiri
 Teacher: Sudheesh TK
This is a basic course on solidstate devices. The aim of this course is to introduce students to the electronic properties of semiconductors and semiconductor devices.
 Teacher: Revathy Padmanabhan
 Teacher: Arun Rahul S
This course is a follow up to the Analog Circuits (Theory) course. The aim of this course is to introduce students to lab work in the area of analog systems.
 Teacher: Arvind Ajoy
 Teacher: Revathy Padmanabhan
This is a basic course on Digital Systems. The aim of this course is to introduce students to various kinds of number systems, elements of boolean algebra, logic gates, realization of boolean functions using logic gates, other combinational circuits, an introduction to various sequential circuits built using flipflops and latches. The course also includes a parallel track introducing students to hardware description languages.
 Teacher: Arvind Ajoy
Introduction to communication systems, different types of analog and digital modulations, demodulation techniques, performance analysis, and basic information theory.
 Teacher: Lakshmi Narasimhan Theagarajan
This is a basic course in numerical analysis. It is often difficult to find an exact solution to many science and engineering problems. It is for these kinds of problems that a numerical method may generate a good answer. The objective of this course is to make the students familiar with essentials of numerics and its ideas such as interpolation, solutions to linear and nonlinear
equations and numerical differentiation and integration.
 Teacher: Sarath Sasi
 Teacher: Arun Rahul S
 Teacher: Lakshmi Narasimhan Theagarajan
Introduction to reinforced concrete structures; basic material properties; basic design concepts; design for flexure; design for shear and torsion; design for compression; design for combined actions; working stress method
 Teacher: Madhu Karthik
Traditional testing is insufficient for software which control safetycritical systems. Model checking is a methodology which employs rigorous methods to verify whether (automata) models of software satisfy properties (specified in certain logics).
In this course, we will study theoretical foundations of model checking.
 Teacher: Srivathsan B
 Teacher: Athira P
Content 
Introduction, Fluid Properties, Basic concepts of Fluid Flow; Newton’s law of viscosity, surface Tension Basic equations of fluid statics; Manometers; Hydrostatic forces on submerged surfaces; Buoyancy and stability; 
Stability of bodies 
Eulerian, Lagrangian, total derivative, Analysis of fluid flow through qualitative visualization (streamlines, streaklines, pathlines, timelines) Reynolds Transport Theorem, 
Integral Analysis of Fluid Motion; Mass Conservation 
Momentum Conservation (noninertial frame, inertial frame) optional: Rotating reference frame Integral angular momentum equation; 
Differential Analysis of Fluid Motion; Conservation of mass, momentum conservation equations ; Derivation of NavierStokes equations ; Couette and Poseullie flow solutions Different simplifications of NS equations in particular Euler’s, Bernoulli’s Equation (steady, unsteady); 
Steady flow energy equation, Static and stagnation pressure, various heads, work 
Dimensional Analysis and Similitude; Buckingham Pi theorem; Various dimensionless groups in fluidthermal systems; Flow similarity and model testing; 
Approximations to NavierStokes; Potential flows, Stokes flows, Boundarylayer flows; 
Internal Viscous Flows: Fully Turbulent flow in a pipe; Head loss in a pipe; Major losses – friction factor, Moody’s chart; Minor losses 
External Flows; pressure and viscous drag; 
Introduction to Compressible flows 
 Teacher: Abhijit Deshpande
 Teacher: Pramod S Mehta
Objectives and Syllabus attached below.
Course coordinator: Prof. Ajith Kumar, Wildlife Conservation Society & National Centre for Biological Sciences, Bengaluru
 Teacher: Ajith Kumar
 Teacher: Debarati Chatterjee
 Teacher: Govindan Kutty K V
 Teacher: A Padmesh
 Teacher: NaveenaChandran KP
 Teacher: Sudheesh TK
 Teacher: Debarati Chatterjee
 Teacher: Sebastian KL
 Teacher: A Padmesh
This course provides the foundation concepts, which are used for proper understanding of various other courses i.e., telecommunication, microwave engineering, power systems, time harmonic electromagnetics, antenna theory etc. This subject is also used for proper understanding of other fields of science and engineering.
 Faculty: Swaroop Sahoo
 Teacher: Ratna Kumar Annabattula
 Teacher: Narasimhan Swaminathan
First order analysis of statically determinate and indeterminate structures.
 Teacher: Anil Kumar
 Teacher: Kishore NK
The lab is divided into two parts :
In the first part of the lab, you will be introduced to scientific computation using Python. This part of the lab will be handled by Arvind.
The second part of the lab will deal with the design of Printed Circuit Boards. This part of the lab will be handled by Swaroop. You will also fabricate your PCBs in the chemistry lab.
 Teacher: Arvind Ajoy
 Teacher: Swaroop Sahoo
 Teacher: Lakshmi Narasimhan Theagarajan
 Teacher: Madhu Karthik
 Teacher: Deepu P
 Teacher: ShaikhFaruque Ali
 Teacher: Arockia Rajan
 Teacher: Jasine Babu
 Teacher: Shalina Mathew
EE2001 COURSE OUTLINE
1. Introduction to Digital Systems and Boolean Algebra (1week)
2. Logic Minimization and Implementation (2 weeks)
3. Combinational Logic (2 weeks)
4. Sequential Logic (2 weeks)
5. State Machine Design (3 weeks)
In the first half of the course, the students will be trained to do the manual drawings of the building components. They will also be trained for preparing the plan, elevation and section of buildings. In the second half of the course, they will be trained for the use of Autocad and Revit for building drawings.
_{}^{}
 Teacher: Anil Kumar
 Teacher: Divya PV
 Teacher: Lakshmi Sankar
 Teacher: Beeraiah Baire
 Teacher: KK Balasubramanian
 Teacher: Govindan Kutty K V
 Teacher: A Padmesh
Introduction, Fluid properties, Basic concepts of fluid flow; Newton’s law of viscosity, surface tension
Basic equations of fluid statics; Manometers; Hydrostatic forces on submerged surfaces; Buoyancy and stability
Eulerian, Lagrangian, total derivative, Analysis of fluid flow through qualitative visualization (streamlines, streaklines, pathlines, timelines);
Reynolds Transport Theorem, Integral Analysis of Fluid Motion; Mass Conservation, Momentum Conservation, angular momentum equation
Differential Analysis of Fluid Motion; Conservation of mass, momentum conservation equations; Derivation of NavierStokes equations
Couette and Poseullie flow solutions
Euler’s equation, Bernoulli’s Equation
Steady flow energy equation, Static and stagnation pressure, various heads, work
Dimensional Analysis and Similitude; Buckingham Pi theorem; dimensionless groups in fluidthermal systems; Flow similarity and model testing
Potential flows, Stokes flows, Boundarylayer flows;
Internal Viscous Flows: Fully Turbulent flow in a pipe; Head loss in a pipe; Major losses – friction factor, Moody’s chart; Minor losses
External Flows; pressure and viscous drag;
Turbulent flows; Compressible flows
 Teacher: Abhijit Deshpande
 Teacher: Madhu Karthik
This is an introductory course in Economics, discussing the key concepts
in the microeconomic analysis of the behaviour of consumers and firms
in the
market, including the impact of policy decisions, and the macroeconomic
concepts including national income,
employment, savings, investment, monetary system and inflation.
 Teacher: Shalina Mathew
EE1101 – Signals and Systems
This course provides the foundation concepts, which are used for proper understanding of various other Electrical Engineering courses i.e., electrical and electronic circuit design, electromagnetics, telecommunication, control system, digital signal processing etc.
 Teacher: Swaroop Sahoo
This course introduces students to the theory and practice of circuit analysis.
 Teacher: Arvind Ajoy
Chemistry Lab
Instructors Prof. K V Govindan Kutty
Dr. Dinesh Jagadeesan
Dr. Mintu Porel
Mr. Harikrishnan
 Teacher: Govindan Kutty K V
 Teacher: Valsakumar M C
 Teacher: Mathews M S